Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Neurol ; 271(5): 2582-2595, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38334813

RESUMO

BACKGROUND AND OBJECTIVES: The impact of subthalamic deep-brain stimulation (STN-DBS) on motor asymmetry and its influence on both motor and non-motor outcomes remain unclear. The present study aims at assessing the role of STN-DBS on motor asymmetry and how its modulation translates into benefits in motor function, activities of daily living (ADLs) and quality of life (QoL). METHODS: Postoperative motor asymmetry has been assessed on the multicentric, prospective Predictive Factors and Subthalamic Stimulation in Parkinson's Disease cohort. Asymmetry was evaluated at both baseline (pre-DBS) and 1 year after STN-DBS. A patient was considered asymmetric when the right-to-left MDS-UPDRS part III difference was ≥ 5. In parallel, analyses have been carried out using the absolute right-to-left difference. The proportion of asymmetric patients at baseline was compared to that in the post-surgery evaluation across different medication/stimulation conditions. RESULTS: 537 PD patients have been included. The proportion of asymmetric patients was significantly reduced after both STN-DBS and medication administration (asymmetric patients: 50% in pre-DBS MedOFF, 35% in MedOFF/StimON, 26% in MedON/StimOFF, and 12% in MedON/StimON state). Older patients at surgery and with higher baseline UPDRS II scores were significantly less likely to benefit from STN-DBS at the level of motor asymmetry. No significant correlation between motor asymmetry and ADLs (UPDRS II) or overall QoL (PDQ-39) score was observed. Asymmetric patients had significantly higher mobility, communication, and daily living PDQ-39 sub-scores. CONCLUSIONS: Both STN-DBS and levodopa lead to a reduction in motor asymmetry. Motor symmetry is associated with improvements in certain QoL sub-scores.


Assuntos
Atividades Cotidianas , Estimulação Encefálica Profunda , Doença de Parkinson , Qualidade de Vida , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Resultado do Tratamento , Lateralidade Funcional/fisiologia
2.
J Neurosci Res ; 102(1): e25270, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284843

RESUMO

Whether striatal fast-spiking interneurons are involved in cortical synchronization remains elusive. We performed acute microinjections of a selective FSI-AMPA receptor antagonist into the sensorimotor striatum of non-human primates to verify whether selective FSI inhibition within the sensorimotor striatum could potentially modify cortical excitability, thereby triggering focal seizures. Experiments were performed on three fascicularis monkeys. During each experimental session, low volumes of IEM-1460 (4-8 µL) were injected slowly at 1 µL/min. Spontaneous behavioral changes were classified according to the Racine scale modified for primates. These induced motor behaviors were correlated with electroencephalographic (EEG and EMG) measures. Power spectrum and time-frequency analysis were performed and compared between each period of interest. Pharmacological selective inhibition of striatal fast-spiking INs induced focal motor seizures. Back averaging confirmed that myoclonic activity was closely linked to cortical spikes-and-waves epileptic activity, with a significant increase in cortical EEG power in all studied frequency bands (p < .0001). Thus, striatal FSIs likely play a role in controlling cortical excitability through the cortico-striato-thalamo-cortical pathway. They may contribute to the pathophysiology of focal motor epilepsies by modulating the threshold at which focal motor seizures are triggered.


Assuntos
Corpo Estriado , Convulsões , Animais , Convulsões/induzido quimicamente , Inibição Psicológica , Interneurônios , Primatas
4.
NPJ Microgravity ; 10(1): 5, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212311

RESUMO

This study investigates the impact of gravity on lower limb muscle coordination during pedaling. It explores how pedaling behaviors, kinematics, and muscle activation patterns dynamically adapts to changes in gravity and resistance levels. The experiment was conducted in parabolic flights, simulating microgravity, hypergravity (1.8 g), and normogravity conditions. Participants pedaled on an ergometer with varying resistances. The goal was to identify potential changes in muscle synergies and activation strategies under different gravitational contexts. Results indicate that pedaling cadence adjusted naturally in response to both gravity and resistance changes. Cadence increased with higher gravity and decreased with higher resistance levels. Muscular activities were characterized by two synergies representing pull and push phases of pedaling. The timing of synergy activation was influenced by gravity, with a delay in activation observed in microgravity compared to other conditions. Despite these changes, the velocity profile of pedaling remained stable across gravity conditions. The findings strongly suggest that the CNS dynamically manages the shift in body weight by finely tuning muscular coordination, thereby ensuring the maintenance of a stable motor output. Furthermore, electromyography analysis suggest that neuromuscular discharge frequencies were not affected by gravity changes. This implies that the types of muscle fibers recruited during exercise in modified gravity are similar to those used in normogravity. This research has contributed to a better understanding of how the human locomotor system responds to varying gravitational conditions, shedding light on the potential mechanisms underlying astronauts' gait changes upon returning from space missions.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38272656

RESUMO

BACKGROUND: NMF are currently poorly evaluated in therapeutic decisions. A quantification of their severity would facilitate their integration. The objective of this study was to validate an autoquestionnaire evaluating the severity of non-motor fluctuations (NMF) in Parkinson's disease (PD). METHODS: Patients with PD were included in presurgical situation for deep brain stimulation of subthalamic nuclei. They participated in the PREDISTIM cohort (a study evaluating the predictive factors for therapeutic response of subthalamic stimulation in PD) in 17 centres in France. Our questionnaire, resulting from previous phases of development, included 11 non-motor symptoms (NMS). Their severity ranged from 0 to 10 and was assessed in OFF and then ON-Dopa to study their fluctuations. RESULTS: 310 patients were included, of whom 98.8% had NMS and 98.0% had NMF. Each NMS was significantly improved by L-Dopa (decrease in severity score ranging from 43.1% to 69.9%). Fatigue was the most frequent and most severe NMS. NMS were considered more bothersome than motor symptoms by 37.5% of patients in OFF-Dopa and 34.9% in ON-Dopa. CONCLUSIONS: This is the first questionnaire allowing a real-time quantification of the severity of NMS and their fluctuation with levodopa. It was able to confirm and measure the effect of L-dopa and show differences according to the patients and the NMS. It differs from other questionnaires by its measurement at a precise moment of the severity of the NMS, allowing its use during pretherapeutic assessments.Our questionnaire has been validated to measure the severity of NMF. It will be able to quantify the non-motor effect of anti-parkinsonian treatments and could facilitate the integration of NMF in therapeutic decisions.

6.
Sci Rep ; 13(1): 22332, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102180

RESUMO

A partial loss of effectiveness of deep brain stimulation of the ventral intermediate nucleus of the thalamus (VIM) has been reported in some patients with essential tremor (ET), possibly due to habituation to permanent stimulation. This study focused on the evolution of VIM local-field potentials (LFPs) data over time to assess the long-term feasibility of closed-loop therapy based on thalamic activity. We performed recordings of thalamic LFPs in 10 patients with severe ET using the ACTIVA™ PC + S (Medtronic plc.) allowing both recordings and stimulation in the same region. Particular attention was paid to describing the evolution of LFPs over time from 3 to 24 months after surgery when the stimulation was Off. We demonstrated a significant decrease in high-beta LFPs amplitude during movements inducing tremor in comparison to the rest condition 3 months after surgery (1.91 ± 0.89 at rest vs. 1.27 ± 1.37 µV2/Hz during posture/action for N = 8/10 patients; p = 0.010), 12 months after surgery (2.92 ± 1.75 at rest vs. 2.12 ± 1.78 µV2/Hz during posture/action for N = 7/10 patients; p = 0.014) and 24 months after surgery (2.32 ± 0.35 at rest vs 0.75 ± 0.78 µV2/Hz during posture/action for 4/6 patients; p = 0.017). Among the patients who exhibited a significant decrease of high-beta LFP amplitude when stimulation was Off, this phenomenon was observed at least twice during the follow-up. Although the extent of this decrease in high-beta LFPs amplitude during movements inducing tremor may vary over time, this thalamic biomarker of movement could potentially be usable for closed-loop therapy in the long term.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Humanos , Tremor Essencial/terapia , Tremor/terapia , Tálamo/cirurgia , Movimento/fisiologia , Resultado do Tratamento
7.
Nat Med ; 29(11): 2854-2865, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37932548

RESUMO

People with late-stage Parkinson's disease (PD) often suffer from debilitating locomotor deficits that are resistant to currently available therapies. To alleviate these deficits, we developed a neuroprosthesis operating in closed loop that targets the dorsal root entry zones innervating lumbosacral segments to reproduce the natural spatiotemporal activation of the lumbosacral spinal cord during walking. We first developed this neuroprosthesis in a non-human primate model that replicates locomotor deficits due to PD. This neuroprosthesis not only alleviated locomotor deficits but also restored skilled walking in this model. We then implanted the neuroprosthesis in a 62-year-old male with a 30-year history of PD who presented with severe gait impairments and frequent falls that were medically refractory to currently available therapies. We found that the neuroprosthesis interacted synergistically with deep brain stimulation of the subthalamic nucleus and dopaminergic replacement therapies to alleviate asymmetry and promote longer steps, improve balance and reduce freezing of gait. This neuroprosthesis opens new perspectives to reduce the severity of locomotor deficits in people with PD.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Masculino , Animais , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Marcha/fisiologia , Medula Espinal
8.
N Engl J Med ; 389(19): 1753-1765, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37937777

RESUMO

BACKGROUND: Local injections of botulinum toxin type A have been used to treat essential head tremor but have not been extensively studied in randomized trials. METHODS: In a multicenter, double-blind, randomized trial, we assigned, in a 1:1 ratio, adult patients with essential or isolated head tremor to receive botulinum toxin type A or placebo. Botulinum toxin or placebo was injected under electromyographic guidance into each splenius capitis muscle on the day of randomization (day 0) and during week 12. The primary outcome was improvement by at least 2 points on the Clinical Global Impression of Change (CGI) scale at week 6 after the second injection (week 18 after randomization). The CGI scale was used to record the patient's assessment of the degree of improvement or worsening of head tremor since baseline; scores range from 3 (very much improved) to -3 (very much worse). Secondary outcomes included changes in tremor characteristics from baseline to weeks 6, 12, and 24. RESULTS: A total of 120 patients were enrolled; 3 patients were excluded during screening, and 117 patients were randomly assigned to receive botulinum toxin (62 patients) or placebo (55 patients) and were included in the intention-to-treat analysis. Twelve patients in the botulinum toxin group and 2 patients in the placebo group did not receive injections during week 12. The primary outcome - improvement by at least 2 points on the CGI scale at week 18 - was met by 31% of the patients in the botulinum toxin group as compared with 9% of those in the placebo group (relative risk, 3.37; 95% confidence interval, 1.35 to 8.42; P = 0.009). Analyses of secondary outcomes at 6 and 12 weeks but not at 24 weeks were generally supportive of the primary-outcome analysis. Adverse events occurred in approximately half the patients in the botulinum toxin group and included head and neck pain, posterior cervical weakness, and dysphagia. CONCLUSIONS: Injection of botulinum toxin into each splenius capitis muscle on day 0 and during week 12 was more effective than placebo in reducing the severity of isolated or essential head tremor at 18 weeks but not at 24 weeks, when the effects of injection might be expected to wane, and was associated with adverse events. (Funded by the French Ministry of Health; Btx-HT ClinicalTrials.gov number, NCT02555982.).


Assuntos
Toxinas Botulínicas Tipo A , Tremor Essencial , Fármacos Neuromusculares , Tremor , Adulto , Humanos , Toxinas Botulínicas Tipo A/administração & dosagem , Toxinas Botulínicas Tipo A/efeitos adversos , Toxinas Botulínicas Tipo A/uso terapêutico , Método Duplo-Cego , Tremor Essencial/tratamento farmacológico , Cabeça , Resultado do Tratamento , Tremor/tratamento farmacológico , Eletromiografia/métodos , Injeções Intramusculares/métodos , Cefaleia/induzido quimicamente , Cervicalgia/induzido quimicamente , Fármacos Neuromusculares/administração & dosagem , Fármacos Neuromusculares/efeitos adversos , Fármacos Neuromusculares/uso terapêutico
10.
Brain Topogr ; 36(2): 135-171, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36749552

RESUMO

Background Magnetoencephalography (MEG) and electroencephalography (EEG) record two main types of data: continuous measurements at rest or during sleep, and event-related potentials/evoked magnetic fields (ERPs/EMFs) that involve specific and repetitive tasks. In this systematic review, we summarized longitudinal studies on recovery from post-stroke aphasia that used continuous or event-related temporal imaging (EEG or MEG). Methods We searched PubMed and Scopus for English articles published from 1950 to May 31, 2022. Results 34 studies were included in this review: 11 were non-interventional studies and 23 were clinical trials that used specific rehabilitation methods, neuromodulation, or drugs. The results of the non-interventional studies suggested that poor language recovery was associated with slow-wave activity persisting over time. The results of some clinical trials indicated that behavioral improvements were correlated with significant modulation of the N400 component. Discussion Compared with continuous EEG, ERP/EMF may more reliably identify biomarkers of therapy-induced effects. Electrophysiology should be used more often to explore language processes that are impaired after a stroke, as it may highlight treatment challenges for patients with post-stroke aphasia.


Assuntos
Afasia , Acidente Vascular Cerebral , Humanos , Masculino , Feminino , Eletroencefalografia , Potenciais Evocados/fisiologia , Afasia/etiologia , Acidente Vascular Cerebral/complicações , Magnetoencefalografia
11.
J Parkinsons Dis ; 12(7): 2179-2190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35871363

RESUMO

BACKGROUND: Dopamine responsiveness (dopa-sensitivity) is an important parameter in the management of patients with Parkinson's disease (PD). For quantification of this parameter, patients undergo a challenge test with acute Levodopa administration after drug withdrawal, which may lead to patient discomfort and use of significant resources. OBJECTIVE: Our objective was to develop a predictive model combining clinical scores and imaging. METHODS: 350 patients, recruited by 13 specialist French centers and considered for deep brain stimulation, underwent an acute L-dopa challenge (dopa-sensitivity > 30%), full assessment, and MRI investigations, including T1w and R2* images. Data were randomly divided into a learning base from 10 centers and data from the remaining centers for testing. A machine selection approach was applied to choose the optimal variables and these were then used in regression modeling. Complexity of the modelling was incremental, while the first model considered only clinical variables, the subsequent included imaging features. The performances were evaluated by comparing the estimated values and actual valuesResults:Whatever the model, the variables age, sex, disease duration, and motor scores were selected as contributors. The first model used them and the coefficients of determination (R2) was 0.60 for the testing set and 0.69 in the learning set (p < 0.001). The models that added imaging features enhanced the performances: with T1w (R2 = 0.65 and 0.76, p < 0.001) and with R2* (R2 = 0.60 and 0.72, p < 0.001). CONCLUSION: These results suggest that modeling is potentially a simple way to estimate dopa-sensitivity, but requires confirmation in a larger population, including patients with dopa-sensitivity < 30.


Assuntos
Levodopa , Doença de Parkinson , Antiparkinsonianos/uso terapêutico , Dopamina , Humanos , Levodopa/uso terapêutico , Imageamento por Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico
13.
Sensors (Basel) ; 22(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35336555

RESUMO

This study compares two methods to quantify the amplitude and frequency of head movements in patients with head tremor: one based on video-based motion analysis, and the other using a miniature wireless inertial magnetic motion unit (IMMU). Concomitant with the clinical assessment of head tremor severity, head linear displacements in the frontal plane and head angular displacements in three dimensions were obtained simultaneously in forty-nine patients using one video camera and an IMMU in three experimental conditions while sitting (at rest, counting backward, and with arms extended). Head tremor amplitude was quantified along/around each axis, and head tremor frequency was analyzed in the frequency and time-frequency domains. Correlation analysis investigated the association between the clinical severity of head tremor and head linear and angular displacements. Our results showed better sensitivity of the IMMU compared to a 2D video camera to detect changes of tremor amplitude according to examination conditions, and better agreement with clinical measures. The frequency of head tremor calculated from video data in the frequency domain was higher than that obtained using time-frequency analysis and those calculated from the IMMU data. This study provides strong experimental evidence in favor of using an IMMU to quantify the amplitude and time-frequency oscillatory features of head tremor, especially in medical conditions.


Assuntos
Movimentos da Cabeça , Tremor , Humanos , Movimento (Física) , Tremor/diagnóstico
14.
J Parkinsons Dis ; 12(2): 699-711, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34897100

RESUMO

BACKGROUND: Deep brain stimulation of the sub-thalamic nucleus (DBS-STN) reduces symptoms in Parkinson's disease (PD) patients with motor fluctuations. However, some patients may not feel ameliorated afterwards, despite an objective motor improvement. It is thus important to find new predictors of patients' quality of life (QoL) amelioration after DBS-STN. We hypothesized that personality dimensions might affect QoL after DBS-STN. OBJECTIVE: To evaluate associations between personality dimensions and QoL improvement one year after DBS-STN. METHODS: DBS-STN-PD patients (n = 303) having answered the "Temperament and Character Inventory" (TCI) before surgery and the PDQ-39 before and one year after surgery were included, from the cohort study PREDI-STIM. Linear regression models were used to evaluate associations between TCI dimensions and change in PDQ-39 scores after DBS-STN. RESULTS: Novelty Seeking and Cooperativeness scores before surgery were positively associated with PDQ-39 scores improvement after DBS-STN (FDR-adjusted p < 0.01). Moreover, paradoxically unimproved patients with deterioration of their PDQ-39 scores after DBS-STN despite improvement of their MDS-UPDRS-IV scores had lower Cooperativeness scores, while paradoxically improved patients with amelioration of their PDQ-39 scores despite deterioration of their MDS-UPDRS-IV scores had higher Reward Dependence scores. CONCLUSION: Some presurgical personality dimensions were significantly associated with QoL amelioration and discrepancy between motor state and QoL changes after DBS-STN in PD. Educational programs before DBS-STN should take in account patient personality dimensions to better deal with their expectations.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Estudos de Coortes , Estimulação Encefálica Profunda/métodos , Humanos , Doença de Parkinson/cirurgia , Doença de Parkinson/terapia , Personalidade , Qualidade de Vida , Núcleo Subtalâmico/fisiologia
15.
Front Neurol ; 12: 620360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777189

RESUMO

Background: Deep brain stimulation is an efficacious treatment for refractory essential tremor, though targeting the intra-thalamic nuclei remains challenging. Objectives: We sought to develop an inverse approach to retrieve the position of the leads in a cohort of patients operated on with optimal clinical outcomes from anatomical landmarks identifiable by 1.5 Tesla magnetic resonance imaging. Methods: The learning database included clinical outcomes and post-operative imaging from which the coordinates of the active contacts and those of anatomical landmarks were extracted. We used machine learning regression methods to build three different prediction models. External validation was performed according to a leave-one-out cross-validation. Results: Fifteen patients (29 leads) were included, with a median tremor improvement of 72% on the Fahn-Tolosa-Marin scale. Kernel ridge regression, deep neural networks, and support vector regression (SVR) were used. SVR gave the best results with a mean error of 1.33 ± 1.64 mm between the predicted target and the active contact position. Conclusion: We report an original method for the targeting in deep brain stimulation for essential tremor based on patients' radio-anatomical features. This approach will be tested in a prospective clinical trial.

16.
Neurology ; 97(20): e1994-e2006, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34667082

RESUMO

BACKGROUND AND OBJECTIVES: To determine whether patients with Parkinson disease (PD) eligible for subthalamic nucleus deep brain stimulation (STN-DBS) with probable REM sleep behavior disorder (RBD) preoperatively could be more at risk of poorer motor, nonmotor, and quality of life outcomes 12 months after surgery compared to those without RBD. METHODS: We analyzed the preoperative clinical profile of 448 patients with PD from a French multicentric prospective study (PREDISTIM) according to the presence or absence of probable RBD based on the RBD Single Question and RBD Screening Questionnaire. Among the 215 patients with PD with 12 months of follow-up after STN-DBS, we compared motor, cognitive, psycho-behavioral profile, and quality of life outcomes in patients with (pre-opRBD+) or without (pre-opRBD-) probable RBD preoperatively. RESULTS: At preoperative evaluation, pre-opRBD+ patients were older (61 ± 7.2 vs 59.5 ± 7.7 years; p = 0.02), had less motor impairment (Movement Disorder Society-sponsored version of the Unified Parkinson's Disease Rating Scale [MDS-UPDRS] III "off": 38.7 ± 16.2 vs 43.4 ± 7.1; p = 0.03) but more nonmotor symptoms on daily living activities (MDS-UPDRS I: 12.6 ± 5.5 vs 10.7 ± 5.3; p < 0.001), had more psychobehavioral manifestations (Ardouin Scale of Behavior in Parkinson's Disease total: 7.7 ± 5.1 vs 5.1 ± 0.4; p = 0.003), and had worse quality of life (Parkinson's Disease Questionnaire-39: 33 ± 12 vs 29 ± 12; p = 0.03), as compared to pre-opRBD- patients. Both pre-opRBD+ and pre-opRBD- patients had significant MDS-UPDRS IV score decrease (-37% and -33%, respectively), MDS-UPDRS III "med 'off'/stim 'on'" score decrease (-52% and -54%), and dopaminergic treatment decrease (-52% and -49%) after surgery, with no between-group difference. There was no between-group difference for cognitive and global quality of life outcomes. CONCLUSIONS: In patients with PD eligible for STN-DBS, the presence of probable RBD preoperatively is not associated with a different clinical outcome 1 year after neurosurgery. TRIAL REGISTRATION INFORMATION: NCT02360683. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that in patients with PD eligible for STN-DBS, the presence of probable RBD preoperatively is not associated with poorer outcomes 1 year post surgery.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Transtorno do Comportamento do Sono REM , Núcleo Subtalâmico , Humanos , Doença de Parkinson/cirurgia , Doença de Parkinson/terapia , Período Pré-Operatório , Estudos Prospectivos , Transtorno do Comportamento do Sono REM/complicações , Medição de Risco , Núcleo Subtalâmico/fisiologia , Resultado do Tratamento
18.
Brain ; 144(3): 909-923, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33638639

RESUMO

Early-onset torsion dystonia (TOR1A/DYT1) is a devastating hereditary motor disorder whose pathophysiology remains unclear. Studies in transgenic mice suggested abnormal cholinergic transmission in the putamen, but this has not yet been demonstrated in humans. The role of the cerebellum in the pathophysiology of the disease has also been highlighted but the involvement of the intrinsic cerebellar cholinergic system is unknown. In this study, cholinergic neurons were imaged using PET with 18F-fluoroethoxybenzovesamicol, a radioligand of the vesicular acetylcholine transporter (VAChT). Here, we found an age-related decrease in VAChT expression in the posterior putamen and caudate nucleus of DYT1 patients versus matched controls, with low expression in young but not in older patients. In the cerebellar vermis, VAChT expression was also significantly decreased in patients versus controls, but independently of age. Functional connectivity within the motor network studied in MRI and the interregional correlation of VAChT expression studied in PET were also altered in patients. These results show that the cholinergic system is disrupted in the brain of DYT1 patients and is modulated over time through plasticity or compensatory mechanisms.


Assuntos
Cerebelo/metabolismo , Corpo Estriado/metabolismo , Distonia Muscular Deformante/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Adulto , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/genética , Tomografia por Emissão de Pósitrons , Adulto Jovem
19.
Stereotact Funct Neurosurg ; 99(3): 230-240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33254172

RESUMO

OBJECTIVE: Asleep deep brain stimulation (DBS) for Parkinson's disease (PD) is being performed more frequently; however, motor outcomes and safety of asleep DBS have never been assessed in a prospective randomized trial. METHODS: We conducted a prospective, randomized, noncomparative trial to assess the motor outcomes of asleep DBS. Leads were implanted in the subthalamic nucleus (STN) according to probabilistic stereotactic coordinates with a surgical robot under O-arm© imaging guidance under either general anesthesia without microelectrode recordings (MER) (20 patients, asleep group) or local anesthesia with MER and clinical testing (9 patients, awake group). RESULTS: The mean motor improvement rates on the Unified Parkinson's Disease Rating Scale Part III (UPDRS-3) between OFF and ON stimulation without medication were 52.3% (95% CI: 45.4-59.2%) in the asleep group and 47.0% (95% CI: 23.8-70.2%) in the awake group, 6 months after surgery. Except for a subcutaneous hematoma, we did not observe any complications related to the surgery. Three patients (33%) in the awake group and 8 in the asleep group (40%) had at least one side effect potentially linked with neurostimulation. CONCLUSIONS: Owing to its randomized design, our study supports the hypothesis that motor outcomes after asleep STN-DBS in PD may be noninferior to the standard awake procedure.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Cirurgia Assistida por Computador , Humanos , Imageamento Tridimensional , Doença de Parkinson/terapia , Estudos Prospectivos , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Vigília
20.
Clin Case Rep ; 8(9): 1806-1808, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32983500

RESUMO

The early onset of gait akinesia should not rule out the diagnosis of hereditary chorea. It would be helpful to proceed to a whole-genome and long-read sequencing in order to track a new pathogenic variant including noncoding repeat expansion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA